

Comparing the Effects of Different Management Practices on the Metabolite Composition of Cereal Crops using a GC-MS based Approach

Tom Shepherd¹, Gary Dobson¹, Diane McRae¹, Julie Sungurtas¹, Simon Pont¹, Raphaëlle Palau¹, Colin Alexander², Susan Verrall¹, Derek Stewart^{1,3} & Louise Shepherd¹

¹The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK. ²Biomathematics & Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK. ³Heriot-Watt University, School of Engineering & Physical Sciences, Edinburgh, Eh14 4AS, UK.

Email: tom.shepherd@hutton.ac.uk

Introduction

We are investigating the effects of conventional *vs.* integrated management practices on both the chemical composition & agronomic properties in six crop species of major economic importance in Scotland (potato, Spring & Winter barley, field beans & Winter wheat). This is being conducted using a long-term rotation, set up in 2009, at the James Hutton Institute's <u>Centre for Sustainable Cropping</u> (CSC*) at Balruddery Farm in Angus. For each crop one industry standard Variety was chosen, along with four others selected for optimum performance under reduced Inputs &/or for differing end use sector requirements.

*http://csc.hutton.ac.uk/

Methods

1. Metabolite Analysis

Compositional analysis of organic metabolites in each of the three cereal crops - Spring & Winter **Polar Extract** barley, & Winter wheat (grown over five consecutive Years: 2011-2015), were determined by GC-MS (Gas Chromatography-Mass Spectrometry), postharvest (Figure 1).

Statistical Analyses

- <u>Principal</u> <u>Components</u> <u>Analysis</u> (PCA).
- <u>**Re</u>stricted <u>Maximum Likelihood (REML).</u></u>**

Questions Being Asked:

- Are there differences between Varieties, Inputs & Years?
- Are any differences between Variety & Input, consistent over the five Years?
- What are the metabolic processes that drive variation?

Extraction of metabolites (Methanol/Water/Chloroform)

Non-Polar Extract (Chloroform)

Fatty Acids; Fatty Alcohols; Alkanes; **Terpenes (+Sterols)**

Analysis by GC-MS For every sample:

147 Polar metabolites (65 known, 82 unknowns)

81 Non-Polar metabolites (65 known, 16 unknowns)

Statistical Analyses

Figure 1. Extraction & Analysis of Metabolites using GC-MS

Results

Example: Winter Barley 2011-2015:

- ◆ PCA Looks at the 'whole picture'.
- Are distinct groups separating?

REML Over-Years Cluster Analysis (Winter Barley 2011-2015):

- Looks at similarity in patterns of inter-Variety variability.
- Are there any groupings of individual compounds that show similar patterns of inter-Variety variability over Years?

malic acid U1554C 2-oxopentanedioic acid

(Methanol/

Water)

Amino acids;

Organic acids;

Sugars etc.

Polar Metabolites

Non-Polar Metabolites

Variety Cluster 9

Polar Metabolites

Polar Metabolites:

26 known & 25 unknown metabolites significantly different. 18 cluster groups (mainly amino acids, organic acids, carbohydrates) identified (five shown above)

Non-Polar Metabolites:

38 known metabolites significantly different. 11 cluster groups identified (four shown above).

Other clusters similar to:

O Variety Cluster 3

Non-Polar Metabolites

Acknowledgements

Special thanks to Cathy Hawes (site manager), Euan Caldwell (farm manager), David Young (crop management), Stuart Wale & Andy Steven (agronomy), Mark Young (data archiving), Gill Banks, Paul Neave & Linda Nell (field surveys).

This work was part of *The Sustainable Production of Food in Scotland – The Link from Crops* to Products project, funded under the Strategic Partnership Programme of The Scottish Government Rural & Environment Science & Analytical Services (RESAS) division.

Conclusions

- Preliminary analyses of data for all three cereal crop types (grown over 2011-2015 of the rotation) using PCA, indicates that Year (seasonal variation) has the greatest effect on metabolite composition.
- There is also evidence for Variety-related variation in composition within individual Years.
- There may be limited evidence for Input effects. Generally, crop growth Inputs (conventional *vs*. integrated) appears to have little effect on the composition of primary metabolites in cereal grains.
- The significance of any such effects will be determined following completion of in-depth over-Years statistical analyses for all three cereal crops.