
The Centre for Sustainable Cropping

Objectives

Design a "sustainable" cropping system (management and crop varieties) to optimise:

- Compare this system against conventional management
- System defined according to 3 categories:
 - Ecological (biodiversity for ecosystem services)
 - Environmental (reduced environmental footprint)
 - Economic (maintain yield with less non-renewable inputs)

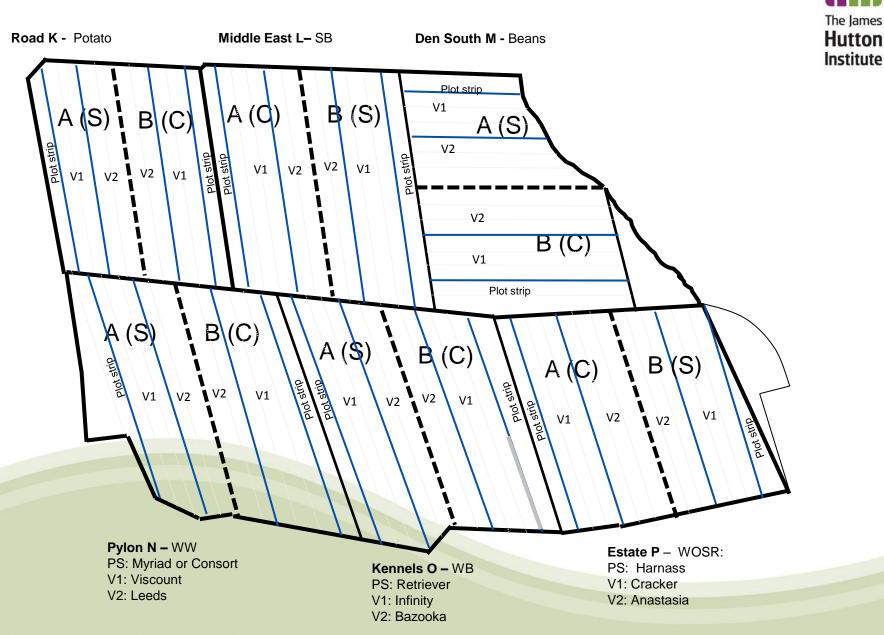
Management options

	Ecosystem function/service	Management change Institute
1. Ecological	 Diverse weeds and foodwebs Regulation of pests and disease Pollination Decomposition and nutrient cycling 	 Reduced herbicide to achieve 5-10% cover of dicots Threshold crop protection to minimise non-target effects Conservation headlands & margins for natural enemy and pollinator resource supply
2. Environmental	 Soil physical structure for optimal plant rooting and erosion control Enhancing water quality by reducing losses to soil water Air pollution mitigation. Reducing carbon footprint 	 Non-inversion tillage Stubble, compost incorporation Cover cropping Variable rate agrochemical inputs Engineered riparian buffers and multifunctional margins
3. Economic	 Primary productivity - efficient conversion of resource to harvestable yield 	 Alternative sources of plant nutrients, e.g. BNF to compensate for reduced N IPM to compensate for reduced agrochem inputs Environmental management (2) to enhance production efficiency

Indicators for monitoring impact

	Ecosystem function/service	Indicator Hutton
1. Ecological	 Diverse weeds and foodwebs. Regulation of pests and disease. Pollination. Decomposition and nutrient cycling. 	 Arable weed seedbank Emerged weed and margin flora diversity Surface active invertebrates (pitfalls) Epigeal invertebrate diversity (vortis) Crop pests and diseases Pollinators and pollination rates Earthworms and litter decomposition
2. Environmental	 Soil physical structure for optimal plant rooting and erosion control. Enhancing water quality by reducing losses to soil water. Air pollution mitigation. Reducing carbon footprint. 	 Soil strength, carbon content, water holding capacity, Soil nutrient supply Sediment loss and run-off N and P conc in soil water GHG emissions Carbon footprint
3. Economic	 Primary productivity - efficient conversion of resource to harvestable product. 	 Crop yield, health and product quality Production efficiency and financial margins (calculated from input costs against sale price)

The CSC platform



• Six course rotation:

Potato – Winter wheat – Winter barley – Winter oilseed – Beans – Spring barley

- 42 ha, 6 fields
- Split field design

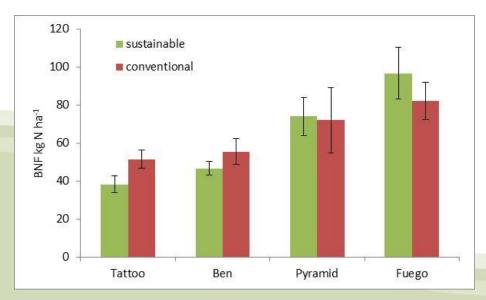
Field layout from autumn 2016

The Sustainable Cropping System

- Non-inversion tillage (10cm)
- Tied-ridging (potatoes to reduce erosion)
- Clover undersowing (additional N input in SB)
- Compost addition (10t/ha before sowing)
- Straw incorporation (economic vs environmental benefit of cereal straw to be assessed)
- Reduced mineral fertiliser (75%, to be replaced with alternative sources of nutrients)
- Reduced herbicide (aiming for 5-10% cover of dicot weeds)
- Pesticides/fungicides (threshold levels use HGCA dose response curves)
- Cover cropping (oil radish)

- Variable rate liming, fertiliser
- Controlled traffic
- IPM strategies
- Direct drilling
- Intercropping

Preliminary findings



Effect of the "sustainable" cropping on three system components:

- Environmental (renewable sources of nutrients, reducing losses from the system: soil properties, leaching/runoff, GHG emissions)
- Ecological (biodiversity for ecosystem services: decomposition, pollination and predation)
- Economic (financial margins, yields)

Environmental: alternative sources of N

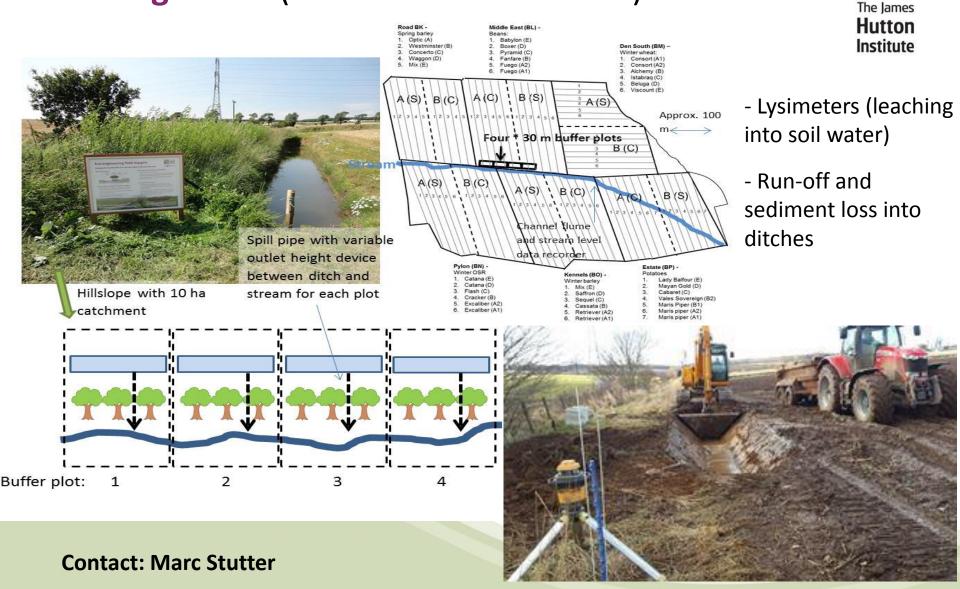
- BNF by Faba bean and undersown clover (EU Legume Futures, Genomia, RESAS 2.1 – novel crops)
- ¹⁵N-based field studies have shown Faba bean to fix 73-335 kg shoot N ha⁻¹ yr⁻¹ (Jensen et al. 2010)
- δ¹⁵N values of faba beans from the CSC indicated N fixation rates of over 200 kg ha⁻¹ yr⁻¹
- 50 kg ha⁻¹ yr⁻¹ residual in soil after harvest = net gain

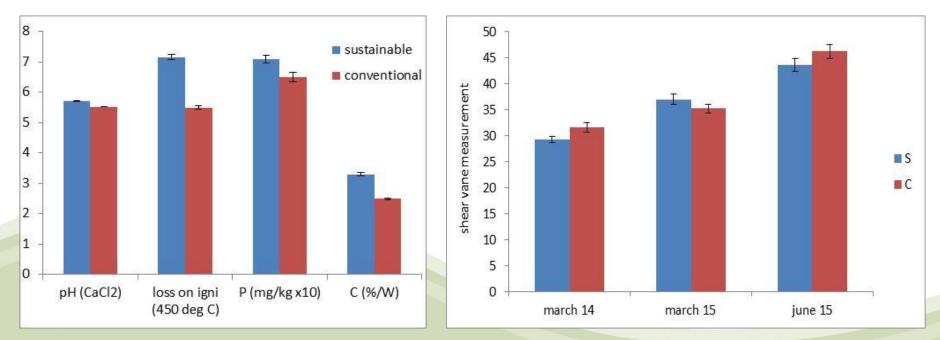
Contact: Pete lannetta

Environmental: GHG emissions and leaching

- Cover boxes and lysimeters sampled every 4 weeks through growing season
- Analysis for CH₄, CO₂, N₂O (gas) NO₂, NO₃ (soil water)
- Soil samples to 25cm for NO₂, NO₃, pH, N and C, moisture content, temperature, conductivity
- Data for nitrogen loss model developed as an accounting tool for nitrogen in arable crops (RESAS 2.3 and EU AMIGA)

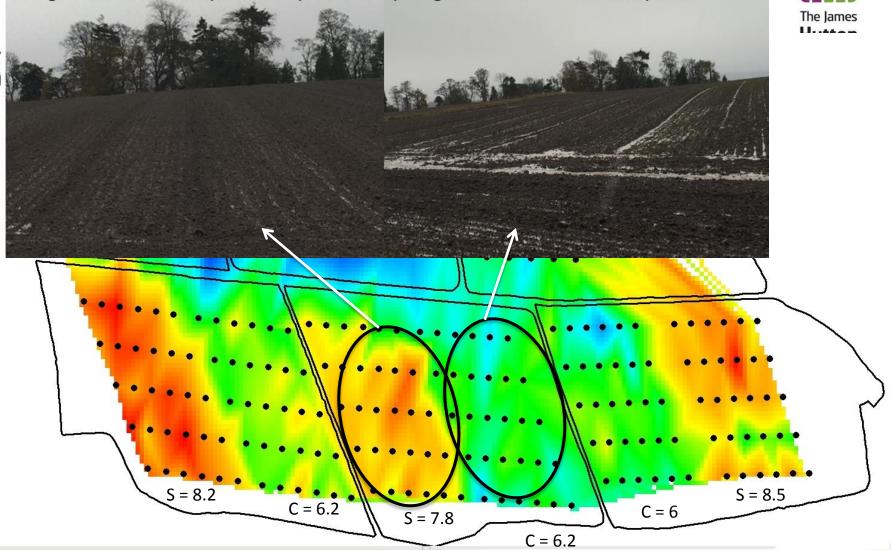
Nitrogen losses from arable systems across Europe estimated at:

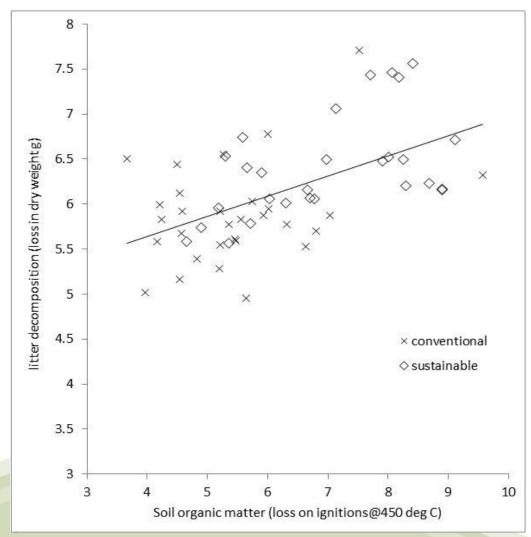

- Soil erosion 60 kg N ha⁻¹ yr⁻¹
- Leaching /runoff 36 kg N ha⁻¹ yr⁻¹
- Gaseous emissions 52.5 kg N ha-1 yr-1
- Harvested material 135 kg N ha⁻¹ yr⁻¹ (Leip et al 2008)



Environmental: engineered buffer zones for reducing losses (Danish Gov BufferTech)

Environmental: soil properties


- Straw incorporation, compost addition, cover crops, reduced tillage, tied ridging
- Higher pH, soil organic matter and carbon, phosphorus
- No difference in soil strength between treatments


Sustainable cropping system: minimum tillage, straw and compost incorporation

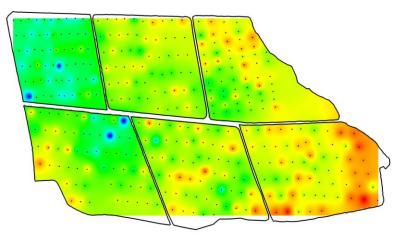
Conventional cropping system: standard plough, straw baled, no compost

Contact: Cathy Hawes

014 by C 5.05 3.28 2.81 2.36 1.18

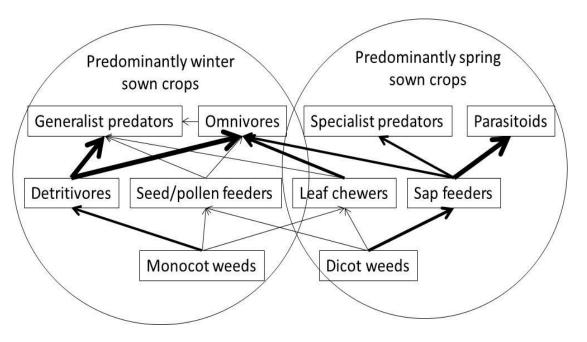
Soil carbon, litter decomposition and soil biodiversity

The James **Hutton**

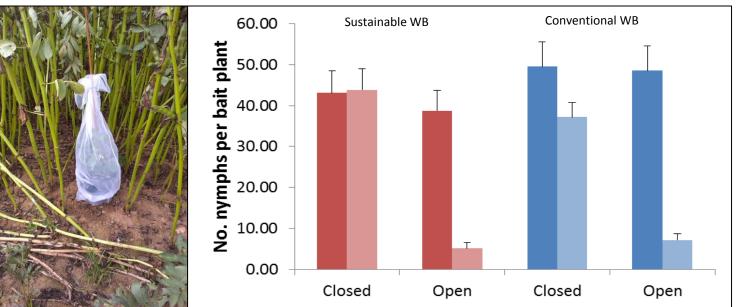

Institute

Log Speci 2.56 1.92 1.28 0.64 0

A

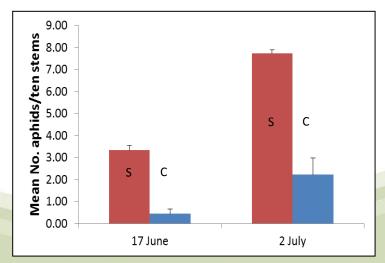

- Soil seedbank composition assessed by seedling emergence over a permanent sampling grid
- More weeds and greater biodiversity in sustainable crops (esp spring sown)
- No direct effect of weeds on yields (within-field scale)
- Field effect stronger than within season treatment effect or previous years crop

0.4 A B 0.3 C D 0.2 PC2 (8% variation explained) • E 0.1 A F 0 -0.1 -0.2 -0.3 -0.4 -0.6 -0.4 -0.2 0.2 0.4 0.6 PC1 (12% variation explained)


The James Hutton Institute

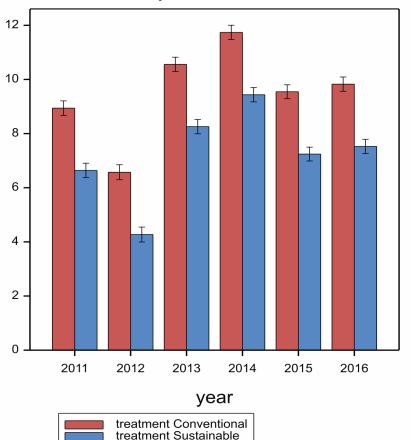
Vortis sampling, pitfall trapping and pollinator transects for:

- arable foodwebs
- pollination
- natural enemy control of crop pests


Insect pest regulation by natural enemies

- Reduced aphid abundance on bait plants exposed to natural enemies
- Highest parasitoid abundance and % parasitism in sustainable potato
- Reduced aphid abundance sustainable winter cereals
- Possibly due to lower plant N content rather than natural enemies

Contact: Ali Karley


Economics

- Gross margins to be estimated from
 - Product sale prices (harvested material, straw bales etc)
 - Input costs (seed, agrochemicals, compost)
 - Tractor time and fuel use
- Data being collated for final year of rotation (socioeconomics group in Aberdeen)
- Yield data can be reported....

Economics: winter wheat yield

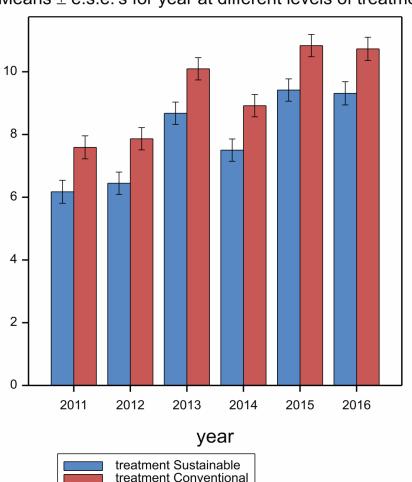
Means \pm e.s.e.'s for year at different levels of treatment

REML variance components analysis.

Tests for fixed effects; sequentially adding terms to fixed model

Fixed term	F statistic	d.d.f.	F pr
variety	2.77	52.0	0.036
treatment	44.24	5.0	0.001
variety.tmt	4.40	52.3	0.004

Sustainable management:


- min-till
- 35 t ha⁻¹ compost + straw incorporation
- 200 kg ha⁻¹ N
- 0.5 dose herbicide
- threshold fungicide

Conventional management:

- standard plough
- no compost, straw baled
- 270 kg ha⁻¹ N
- full recommended dose herbicide
- standard fungicide applications

Economics: winter barley yield

Means \pm e.s.e.'s for year at different levels of treatment

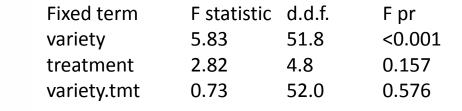
REML variance components analysis.

Tests for fixed effects; sequentially adding terms to fixed model

Fixed term	F statistic	d.d.f.	F pr
variety	6.78	48.1	< 0.001
treatment	6.04	5.0	0.058
variety.tmt	1.49	48.3	0.220

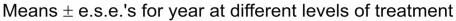
Sustainable management:

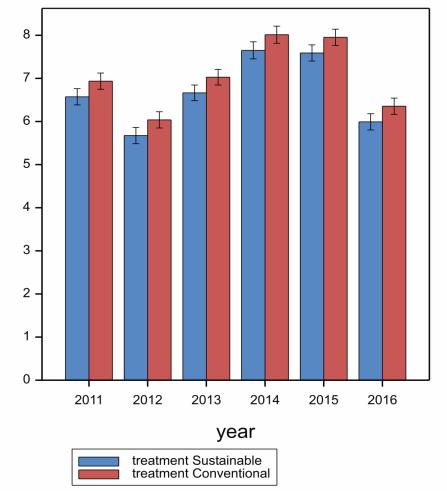
- min-till
- 35 t ha⁻¹ compost + straw incorporation
- 130 kg ha⁻¹ N
- 0.5 dose herbicide
- threshold fungicide


- standard plough
- no compost, straw baled
- 170 kg ha⁻¹ N
- full recommended dose herbicide
- standard fungicide applications

Economics: spring barley yield

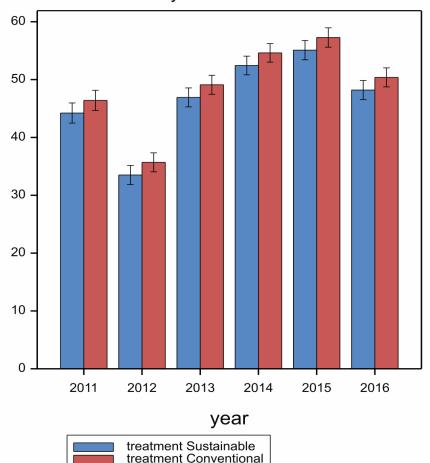
REML variance components analysis.


Tests for fixed effects; sequentially adding terms to fixed model



Sustainable management:

- min-till
- 35 t ha⁻¹ compost + straw incorporation
- clover undersowing
- 80 kg ha⁻¹ N
- alternative herbicide applied after clover establishment
- threshold fungicide


- standard plough
- no compost, straw baled
- no clover
- 110 kg ha⁻¹ N
- full recommended dose herbicide
- standard fungicide applications

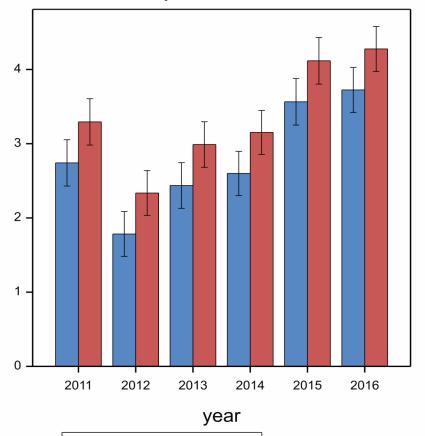
Economics: potato yield

Means \pm e.s.e.'s for year at different levels of treatment

REML variance components analysis.

Tests for fixed effects; sequentially adding terms to fixed model

Fixed term	F statistic	d.d.f.	F pr
variety	13.61	51.2	< 0.001
treatment	1.25	5.0	0.314
variety.tmt	0.54	51.8	0.704


Sustainable management:

- 35 t ha⁻¹ compost + cover crop
- 147 kg ha⁻¹ N
- alternative herbicide
- tied ridging

- standard plough
- no compost or cover crop
- 196 kg ha⁻¹ N
- full recommended dose herbicide

Economics: winter oilseed rape yield

treatment Sustainable

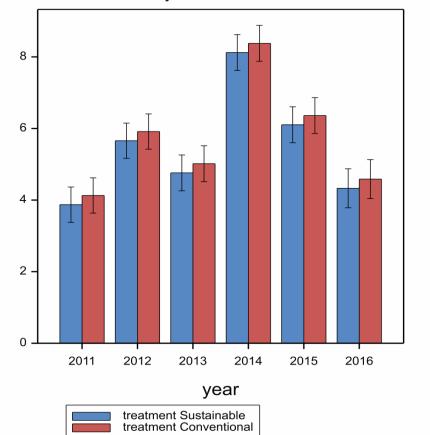
treatment Conventional

Means \pm e.s.e.'s for year at different levels of treatment

REML variance components analysis.

Tests for fixed effects; sequentially adding terms to fixed model

Fixed term	F statistic	d.d.f.	F pr
variety	4.80	44.7	0.001
treatment	1.34	4.6	0.303
variety.tmt	0.20	45.4	0.961


Sustainable management:

- minimum tillage
- 35 t ha⁻¹ compost + clover from previous
- 162 kg ha⁻¹ N
- reduced herbicide

- standard plough
- no compost or clover
- 216 kg ha⁻¹ N
- full recommended dose herbicide

Economics: bean yield

Means \pm e.s.e.'s for year at different levels of treatment

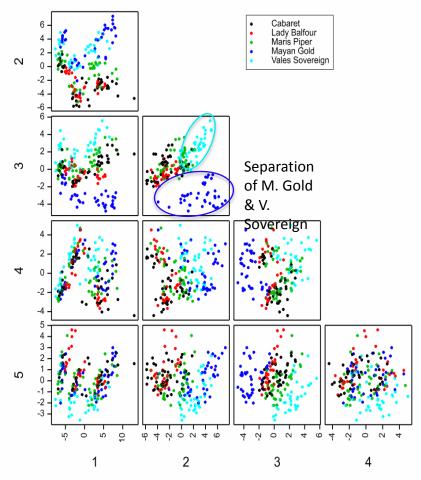
REML variance components analysis.

Tests for fixed effects; sequentially adding terms to fixed model

Fixed term	F statistic	d.d.f.	F pr
variety	1.76	46.7	0.119
treatment	0.24	4.9	0.647
variety.tmt	0.57	47.6	0.776

Sustainable management:

- minimum tillage
- 35 t ha⁻¹ compost
- 0 kg ha⁻¹ N
- reduced herbicide


- standard plough
- no compost
- 0 kg ha⁻¹ N
- full recommended dose herbicide

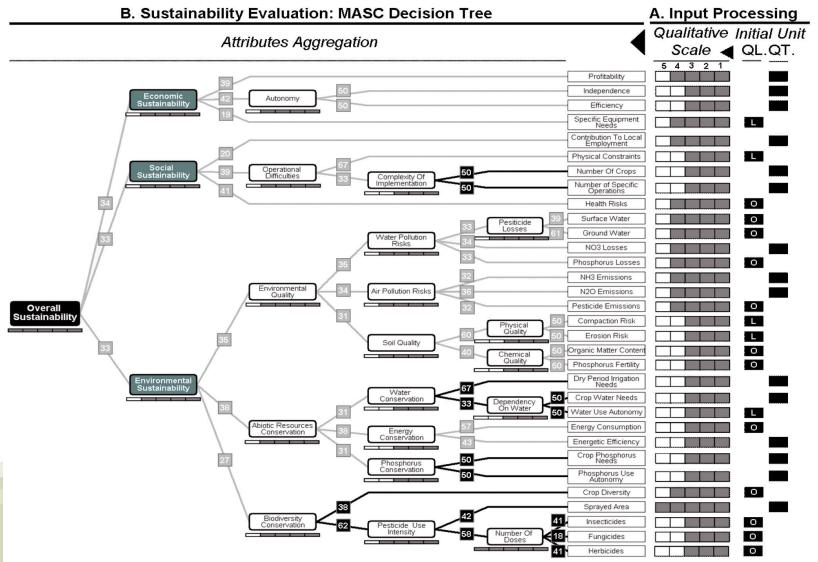
Economics: Yield quality

- Potato: dry matter, total N, protein, sugars & starch, minerals, vitamin C, chlorogenic acid, carotenoids, polyphenol oxidase, LC-MS, GC-MS
- No effect of treatment on quality measures; differences between cultivars
- WOSR: oil content, fatty acid composition, total
 N, C & H, tocopherols, phytic acid, glucusinolate
- Cereals: dry matter, TGW, β-glucan content, sugar & starch content, total C, H & N, LC-MS, GC-MS P & N
- Beans: 60 bean weight, dry matter, sugar & starch content, total C, H & N, LC-MS, GC-MS P & NP
- Combinable crops: analysis in progress

Contact: Lou Shepherd

Principle components analysis of GC-MS Non-Polar Metabolites (*n* = 53)

Whole systems approach: trade-offs


- Nitrogen input for max yield vs. environmental pollution
- Complete weed control for eliminating competition vs. weed understorey for biodiversity & ecosystem services (IPM)
- Soil carbon for improving physical structure (e.g. for crop rooting) vs. carbon food resource for soil borne pathogens
- Insecticide control of crop pests vs. non target effects reducing natural enemy regulation of pest populations
- Short term profit vs. environmental health for long term sustainability

Systems Impact Assessment: DexIPM

ton

ute

Contact: Geoff Squire

Visitors and KE

- Networks and platforms: ENDURE, AnaEE, INRA, North Wyke Farm Platform, Rothamsted, SIRN
- Agronomy and industry groups: AICC, Danish Agronomy, Co-op Farms and now FarmCare, Agrinos, NFUS, Pepsico, Soil Essentials, Norwegian seed potato grower association, GWK Potato, Potato Council and AHDB
- Environmental organisations: LEAF, Soil Association, SEPA, SNH, BCT, GWCT
- Scottish Government policy advisors
- Scientific community: Zhejiang Academy Of Agricultural Sciences, AAB & CPNB meetings, Carbon Management Centre International Conference delegates meetings and site visits, Cornell University, Aberdeen University, SSCR events and visiting scientists to the institute

RESEARCH

- Funding: Scottish Government underpinning capacity
- Crop management and agronomy: Stuart Wale, John Bennett, Euan Caldwell

- Field sampling and database management: Mark Young, Paul Neave, Linda Nell Gill Banks
- IPM, pathogens and crop health: Adrian Newton, Jennie Brierley, Alison Lees, Ali Karley, Carolyn Mitchell
- Nitrogen budgets and BNF: Euan James, Pete lannetta, Mark Young

Biodiversity and system function: Jenni Stockan, Cathy Hawes, Graham Begg,

Soil biophysics and hydrology: Blair Mackenzie, John Rowan, Marc Stutter

Dexi: Marion Demade, Geoff Squire

Yield quality: Lou Shepherd, Derek Stewart

Ashley Gorman

উল্লি Scottish Natural Heritage Dualchas Nàdair na h-Alba

The James Hutton Institute

